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Abstract
Arsenic (As) is an environmental and food chain contaminant. Excessive
accumulation of As, particularly inorganic arsenic (Asi), in rice (Oryza
sativa) poses a potential health risk to populations with high rice con-
sumption. Rice is efficient at As accumulation owing to flooded paddy
cultivation that leads to arsenite mobilization, and the inadvertent yet
efficient uptake of arsenite through the silicon transport pathway. Iron,
phosphorus, sulfur, and silicon interact strongly with As during its route
from soil to plants. Plants take up arsenate through the phosphate trans-
porters, and arsenite and undissociated methylated As species through
the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is read-
ily reduced to arsenite in planta, which is detoxified by complexation
with thiol-rich peptides such as phytochelatins and/or vacuolar seques-
tration. A range of mitigation methods, from agronomic measures and
plant breeding to genetic modification, may be employed to reduce As
uptake by food crops.
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INTRODUCTION

Inorganic arsenic (Asi) is a class 1 carcinogen
(45). There is widespread chronic Asi poison-
ing in regions of Asia, South America, and
elsewhere, due to the consumption of drinking
water with geogenically elevated Asi, with the
situation at its worst in the densely populated
floodplains and deltas of South and Southeast
Asia (13, 85). While As contamination in
drinking water has attracted much attention,
plant-based foods are also an important source
of Asi. This issue has only been recognized
in recent years (74, 76, 139, 140). Rice is

specifically a problem regarding the entry of
As into the food chain, owing to a combination
of anaerobic growing conditions and specific
plant physiological characteristics. It is also the
dietary staple for half the world’s population.
Intake of Asi from eating rice can be substan-
tial; it is the dominant source for populations
based on a rice diet and not exposed to high
concentrations of As in drinking water (52,
76). Even for populations exposed to elevated
Asi in drinking water, such as As-affected
areas in South Asia, Asi intake from rice is
significant, accounting for ∼50% (81, 90).
There is an urgent need to understand how
plants assimilate and metabolize As in order
to develop mitigation strategies against this
widespread contamination in the food chain.

Here, we review the biogeochemical as-
pects of As in the environment controlling its
bioavailability to plants, the mechanisms of As
uptake and metabolism in plants and potential
mitigation strategies to reduce As uptake. We
focus on rice, but also draw from recent ad-
vances in research on other plant species. Be-
cause it is a nonessential and toxic element,
As is taken up inadvertently by plants through
the pathways for essential or beneficial nutri-
ents and detoxified via a variety of mechanisms.
Along its route from soil to plants, As inter-
acts with a number of elements, most noticeably
iron (Fe), phosphorus (P), silicon (Si), and sul-
fur (S); these interactions are summarized in the
sidebar, Four Elements that Interact Strongly
with Arsenic, and discussed in more details in
the following sections.

ARSENIC IN THE TERRESTRIAL
ENVIRONMENT

Arsenic is ubiquitous in the environment; it is
the twentieth most abundant element in the
Earth’s crust, with an average concentration
of approximately 3 mg kg−1 (20). More than
200 As-containing minerals exist; frequently
As is associated with S in minerals such as
arsenopyrites (FeAsS), realgar (As4S4), and or-
piment (As2S3). Arsenic is released into the en-
vironment by both natural processes, such as
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weathering of rocks, volcanic emissions and dis-
charge from hot springs, and various anthro-
pogenic activities such mining, smelting, and
the use of As-containing pesticides, herbicides,
wood preservatives, and feed additives.

Extensive chronic As poisoning is occurring
in South Asia, potentially affecting tens of
millions of people, due to As contamination
in the drinking water extracted from shallow
underground aquifers (13, 115). This problem
is at its worst in the Bengal Delta region
(encompassing Bangladesh and West Bengal,
India), where tube-wells were installed to
provide “safe” drinking water free from mi-
croorganisms causing gastrointestinal diseases,
without prior knowledge of As contamination.
In Bangladesh, nearly half of the shallow tube-
wells produce water containing >10 μg L−1 As,
which is the current As limit in drinking water
recommended by the World Health Organi-
zation (WHO), with the exposed population
estimated at 57 million (14). The geochemical
and hydrological conditions causing this As
contamination are still being debated, but it
is clear that elevated As concentrations are
linked to the reducing environment developed
in Holocene alluvial and deltaic deposits (14).
Anaerobic metal-reducing bacteria may play
a key role in the release of As by mediating
reductive dissolution of As-rich Fe(III) oxy-
hydroxides (47). These groundwaters, some
containing more than 1 mg L−1 As, are also
used extensively for irrigating rice crops in the
dry season, adding more than 1000 t of As per
year to the agricultural soils in Bangladesh (3).

The global average concentration of As in
soil is about 5 mg kg−1 (45). Uncontaminated
soils typically contain <10 mg kg−1 total As,
but the concentration can reach hundreds or
thousands of mg kg−1 in contaminated envi-
ronments (45, 48). The bioavailability of As to
plants is governed by edaphic properties, envi-
ronmental conditions and modification of the
soil in the rhizosphere; these factors interact
to influence As speciation in the soil. Arsenic
has four oxidation states: −3, 0, +3, and +5,
the last two being the most common in the
terrestrial environment. Arsenate [As(V)] is the

FOUR ELEMENTS THAT INTERACT
STRONGLY WITH ARSENIC

Iron: Fe plays a pivotal role in the biogeochemical cycle of As, with
Fe oxyhydroxides on soil particulate surfaces, or root surfaces of
wetland plants, serving as a strong adsorbent for As. Reductive
dissolution of Fe oxyhydroxides under a reducing environment
releases the adsorbed As, leading to enhanced As availability to
plants. Fe-reducing bacteria are linked to the mobilization of As
in aquifer of the river delta in Bangladesh.

Phosphorus: Arsenate is a phosphate analogue, entering plant
cells via the phosphate transporters, and also interfering with
phosphate metabolism. Use of phosphorus fertilizers to decrease
As accumulation in plants has not always been successful, be-
cause phosphate competes with arsenate in both root uptake and
adsorption on Fe oxides/hydroxides. Increasing cellular P status
alleviates As toxicity.

Sulfur: S helps to detoxify As through complexation of arsen-
ite with thiol-rich peptides. This complexation may also help to
keep As in roots and restrict As translocation to shoots. Main-
taining sufficient S nutrition may be particularly important in
As-contaminated environments.

Silicon: The role of Si transporters in As uptake was realized
only recently. Physiochemical similarities between silicic acid and
arsenous acid allow the latter to be taken up via the pathway for
the former. Si fertilization may be an effective strategy to decrease
As accumulation in rice grown in As-contaminated soil.

Rhizosphere: the
zone of soil
surrounding plant
roots that is modified
chemically or
biologically by the
activities of roots

predominant species in aerobic soils, whereas
arsenite [As(III)] predominates in anaerobic
environments such as submerged soils. Inter-
conversion between these two As species is
driven by both biotic and abiotic processes
and strongly influenced by the redox potential
and pH. Both arsenate-reducing and arsenite-
oxidizing bacteria are present in soil. Micro-
bial arsenate reduction occurs via two principal
mechanisms: dissimilatory reduction in which
arsenate serves as a terminal electron accep-
tor during anaerobic respiration, and detoxifi-
cation in which arsenate is reduced to arsenite
and then pumped out of the microbial cells (8,
44, 117). Abiotic oxidation of arsenite can occur
rapidly through reaction with manganese oxide
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(e.g., birnessite) in soil (91), whereas abiotic ar-
senate reduction may take place in anaerobic
and acidic environments with dissolved sulfide
as the reductant (106). In aerobic soils, arse-
nate is usually present at very low concentra-
tions (<1 μM) in soil solution because of the
strong adsorption by oxides/hydroxides of iron
and aluminum (27, 28); therefore, the bioavail-
ability of arsenate is generally low. When soils
are submerged, as in flooded paddy fields, As
is mobilized into the soil solution mainly as ar-
senite (68, 148). This is a result of two pro-
cesses: (a) the reductive dissolution of iron ox-
ides/hydroxides and release of the associated
As, and (b) reduction of strongly adsorbed ar-
senate to more weakly adsorbed arsenite lead-
ing to an enhanced partition of As from the
solid to the solution phase (27, 121) (Figure 1).

Consequently, the bioavailability of As is more
enhanced to rice plants grown under sub-
merged conditions than to those grown under
aerobic conditions (56, 148). Arsenite concen-
trations as high as 20 μM have been reported
in the soil solutions from paddy fields contam-
inated by irrigation of As-laden groundwater,
causing As toxicity and yield losses in rice (92).

Methylated As compounds, such as mono-
methylarsonic acid [MMA: CH3AsO(OH)2],
dimethylarsinic acid [DMA: (CH3)2AsOOH]
and trimethylarsine oxide [TMAO:
(CH3)3AsO] (Figure 2), are found in some
soils, sometimes as a minor component (41,
122), but can reach high concentrations (1).
MMA and DMA can be produced from inor-
ganic As through biomethylation by some soil
microorganisms or algae (7). Both MMA and

Fe plaque

Fe2+ + O2 +H2O Fe(OH)3

O2 O2

As(III) + O2 As(V)

As(III)

MMA

DMA

Volatilization

Me2AsH TMA

DMA

As(V)

MMA

As(III)
Fe(III) oxides/
hydroxides

As(V)

As(V)

As(V)

Fe2+, As(V)

Figure 1
Arsenic mobilization and transformation in flooded paddy soil and interactions in the rice rhizosphere.
Arrows with solid and broken lines indicate dominant and minor processes, respectively. For more details of
the As methylation pathway, see Figure 4b.
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As OH

O

HO

Arsenate

OH

As OHHO

Arsenite

OH

As OH

O

HO

Monomethylarsonic acid
(MMA)

CH3

As OH

O

CH3

Dimethylarsinic acid
(DMA) 

CH3

As CH3

O

CH3

Trimethylarsine
oxide (TMAO) 

CH3

As+ CH2

CH3

CH3

CH3

Arsenobetaine

C O

O–

O

OH

As

CH3

CH3

O

OCH2CH(OH)CH2R

OH

Arsenosugar

Figure 2
Arsenic compounds found in soils and terrestrial plants.

DMA (also known as cacodylic acid) have been
widely used as pesticides and herbicides, the
latter also as a cotton defoliant. DMA applied
to soil can be transformed by microorganisms
via two pathways: (a) reductive conversion to
volatile organo-arsine species (e.g., dimethyl-
or trimethylarsine) and emissions from the
soil system, and (b) demethylation to produce
the end products CO2 and arsenate; the
first pathway predominates under anaerobic
conditions, whereas both pathways occur in
aerobic soil (144) (Figure 1). The rate of
degradation and the relative importance of the
two pathways vary among different studies,
probably due to different soil properties,
microbial communities, and environmental
conditions; for example, Gao & Burau (30)
found that demethylation was quantitatively
far more important than the evolution of
gaseous arsines when DMA was added to an
aerobic soil. In one study (143), the half-life
for field-applied DMA and MMA was found to
be about 20 days, although these compounds
were still detectable in soil 1.5 years after
applications. In field studies where inorganic
or methylated As compounds were applied
as pesticides or herbicides, As losses through
volatilization, leaching, runoff, and crop
removal were estimated to be approximately

0.03%/day (or 10%/year) (142). Volatilization
of methylarsines, mainly trimethylarsine
(TMA) and some dimethylarsine (Me2AsH),
was also found from an As-contaminated paddy
soil treated with animal manure under flooded
conditions, but the amount was relatively
small, only 0.014% of the total soil As during
a two-month incubation (78). Note that
methylarsines are oxidized in the air rapidly
during the day by UV irradiation and are then
deposited on land.

Arsenobetaine [(CH3)3As+CH2COOH]
(Figure 2), the dominant As species in marine
animals, was found to be present in an acidic
fen soil with unclear origin (41). Arsenobetaine
is rapidly demethylated in soil leading to the
production of DMA and the end product arsen-
ate (42). In some coastal regions, seaweeds rich
in arsenosugars (Figure 2), which comprise
a group of dimethylarsinoyl ribose derivatives
and are the major As compounds in marine
algae, are applied to land as fertilizers. This
practice can increase soil As levels greatly in the
long term (16). Arsenosugars in seaweed added
to soil are degraded to DMA and Asi (16).

Several As-containing phenolic compounds,
such as 3-nitro-4-hydroxyphenylarsonic acid
(roxarsone), are widely used as feed additives to
control parasites in poultry. These compounds

www.annualreviews.org • Arsenic as a Food Chain Contaminant 539

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

10
.6

1:
53

5-
55

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 b

-o
n:

 U
ni

ve
rs

id
ad

e 
T

ec
ni

ca
 d

e 
L

is
bo

a 
(U

T
L

) 
- 

R
ei

to
ri

a 
on

 1
0/

04
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV410-PP61-23 ARI 31 March 2010 16:48

Transfer factor (TF):
the ratio of the As
concentration in plant
to the total As
concentration in soil

Arsenic
hyperaccumulators:
plant species able to
accumulate more than
1000 mg kg−1 dry
weight As in the
above-ground parts
without suffering from
phytotoxicity

Arsenic speciation:
chemical forms of
arsenic compounds

HPLC: high
performance liquid
chromatography

ICP-MS: inductively
coupled plasma mass
spectrometry

ES-MS: electro-spray
mass spectrometry

Phytochelatins
(PCs): cysteine-rich
peptides with a general
structure of
(γ-GluCys)n-Gly,
where n is usually 2–5

are degraded during composting of poultry lit-
ter and subsequent land application, releasing
arsenate to the environment (31, 117).

ARSENIC ACCUMULATION
AND SPECIATION IN PLANTS

Variation Among Plant Species
in Arsenic Accumulation

Plants vary considerably in their ability to accu-
mulate As. Arsenic concentrations in the above-
ground part of plants growing in uncontami-
nated soils are typically <1 mg kg−1 dry weight
(20, 48), circa less than one tenth of the soil As
concentration [i.e., the As transfer factor (TF)
<0.1)]. Plants with these low TFs are called ex-
cluders because of their restricted uptake and,
more importantly, restricted translocation of As
from roots to shoots.

At the other extreme, As hyperaccumulators
are able to accumulate up to ∼2% As in the
above-ground parts, with the As TF usually ex-
ceeding 1 (66, 157). Following the first report
of brake fern (Pteris vittata) as an As hyperaccu-
mulator (66), 12 species of As hyperaccumula-
tors have so far been identified, all fern species
within the Pteridaceae family (mostly within the
Pteris genus) (see Reference 157 for a review).

Between the excluders and hyperaccumula-
tors, there are plant species with intermediate
abilities to accumulate As. Examples include the
Douglas-fir (Pseudotsuga menziesie) (40), several
Equisetum species (71), and the Brassica Isatis ca-
padocica (50). Some aquatic plants were found to
contain high concentrations (>1000 mg kg−1)
of As, but this was a result of physicochem-
ical adsorption to the plant’s surface, facili-
tated by codeposition of Fe hydroxides (105).
The rootless duckweed Wolffia globosa accumu-
lates and tolerates 400 mg kg−1 As; its strong
accumulation phenotype is likely a result of
the absence of the root-to-shoot translocation
barrier (155). Caution is needed when plant
specimens collected from field-contaminated
sites are analyzed for elemental concentrations,
as surface contamination can lead to spurious
interpretation.

Rice (Oryza sativa) is also an interesting case
as it is much more efficient in As accumula-
tion than other cereals such as wheat (Triticum
aestivum) and barley (Hordeum vulgare) (118,
141), with its As TF often approaching unity
(141). The relatively high As accumulation in
rice is due to two reasons: (a) enhanced As
bioavailability under the anaerobic conditions
of submerged paddy soils (discussed above), and
(b) the inadvertent uptake and transport of ar-
senite through the Si pathway, which is highly
efficient in rice (see below).

Arsenic Speciation in Plants

Determination of As (arsenic) speciation in
plants is important for understanding As
metabolism in plants and for assessing the tox-
icity of plant As to the consumers at the higher
trophic levels. Research in this area has been
greatly advanced in recent years with the aid
of analytical techniques such as HPLC/ICP-
MS/ES-MS and synchrotron radiation–based
X-ray absorption spectroscopy (XAS). Analyses
of a range of plant species collected from As-
contaminated environments have shown that
both terrestrial and freshwater aquatic plants
contain predominantly Asi (33, 53, 54). Both
arsenate and arsenite are present, but their rel-
ative proportions vary among the plant species
tested. However, sample preparation methods
such as freeze-drying and chemical extraction
used in these studies may cause oxidation of
arsenite. More recent studies on plants grown
under a controlled environment and fed with
arsenate show that As is present predominantly
as trivalent species [As(III)] (e.g., 22, 95, 101,
149). Arsenite is also the major species in the
fronds of As-hyperaccumulating ferns (29, 66,
135). Furthermore, most of the arsenite in the
root and shoot tissues of Arabidopsis thaliana
and Brassica juncea is coordinated with the sul-
fydryl groups of thiol-rich peptides such as
glutathione (GSH) and phytochelatins (PCs)
(22, 95). Using HPLC coupled with ICP-MS
and ES-MS, Raab et al. (101) showed that
arsenite is complexed with a variety of thiol
compounds in sunflower (Helianthus annuus);
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here the most prominent complexes are GS-
As(III)-PC2, As(III)-PC3, As(III)-(PC2)2, and
As(III)GS3. This complexation is not surpris-
ing because arsenite has a high affinity to sul-
fydryl groups, with the coordination in a 1:3
stoichiometry (21, 111). However, As hyper-
accumulators such as P. vittata and Pteris cret-
ica appear to be exceptions, containing arsenite
mostly as uncomplexed species, due to low PC
concentrations in tissues (100, 158).

Many plant species also contain small
amounts of methylated As compounds, such
as MMA, DMA, TMAO, and, occasionally,
the tetramethylarsonium ion (33, 53, 54). In
one study (33), methylated As species were
reported to be the major As compounds in
red clover (Trifolium pratense) growing on a
site with high soil As, with MMA and DMA
accounting for 35% and 24%, respectively,
of the As extracted by methanol-water ex-
tract. Monomethylarsonous acid with As in the
trivalent state [MMA(III): CH3As(OH)2]] can
be complexed with thiol compounds, such as
MMA(III)-PC2 identified in the roots of sun-
flower exposed to inorganic As (101). Although
pentavalent As does not form complexes with
thiol groups directly, pentavalent As in DMA
can bind to GSH when it is activated by sulfide,
forming the dimethylarsinothioyl glutathione
(DMAS-GS) complex in the sulfur-rich plant
species Brassica oleracea (103).

Arsenosugars are found in some terrestrial
plant species at low levels (53, 54); whether they
are synthesized by plants is not known.

Arsenic in Food Plants and
Implications for Human Health

For populations not exposed to elevated As
in drinking water, foods represent the main
sources of As intake for humans. Dietary in-
take of total As ranges from 10 to 200 μg
per person per day in various countries (112,
145). Although seafood accounts for the ma-
jority (60%–90%) of the total dietary in-
take of As in countries such as the United
States, Canada, and Japan, most of the As in
seafood is present in organic forms (mainly

arsenobetaine in fish) that are relatively non-
toxic (112). It is Asi species that are of partic-
ular concern because they are chronic human
carcinogens. The Joint FAO/WHO Expert
Committee on Food Additives recommends a
provisional tolerable weekly intake (PTWI) of
Asi of 15 μg kg−1 body weight, equivalent to
130 μg day−1 for a 60-kg person (145). No
value has been set for organic As due to the
lack of toxicological data. Arsenic in terrestrial
food plants is dominated by Asi (112). Dietary
intake of Asi from terrestrial food plants is gen-
erally low except for populations with rice as
the staple diet (76, 112). In the Bengal Delta
region, where As-contaminated water has been
used for irrigation, relatively high concentra-
tions of As have been reported in some vegeta-
bles and spices (107, 138), with As present only
in inorganic forms (138). However, among all
food categories, consumption of rice makes the
largest contribution to the dietary intake of Asi

(76). In a global survey of 901 samples of pol-
ished rice, total As concentration varied from 10
to 820 μg kg−1 with a mean of 150 μg kg−1 (76).
A global “normal range,” i.e., not from an As-
contaminated environment, of 80–200 μg kg−1

has been suggested (151). Arsenic contamina-
tion due to irrigation with As-tainted ground-
water in South Asia or mining activities in
China has resulted in further elevation of As
levels in rice (74, 138, 160). For comparison, As
concentrations in wheat grain or flour are gen-
erally <50 μg kg−1, with a mean value approxi-
mately tenfold lower than that of rice (107, 112,
141).

The main As species in rice grain are Asi

and DMA, with MMA occasionally found at
minor levels. The relative proportions of Asi

and DMA vary widely: The percentage of total
As present as Asi varies from 10% to 90% (76,
138, 139, 152). Rice produced in Asian coun-
tries contains predominantly Asi (76), whereas
rice produced in the southern-central states of
the United States has considerably higher levels
of total As but lower percentages of Asi than in
Californian or Asian rice (139, 140, 151, 152).
The reasons for the high percentage of DMA
in U.S. rice are unclear. Soil properties and

www.annualreviews.org • Arsenic as a Food Chain Contaminant 541

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

10
.6

1:
53

5-
55

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 b

-o
n:

 U
ni

ve
rs

id
ad

e 
T

ec
ni

ca
 d

e 
L

is
bo

a 
(U

T
L

) 
- 

R
ei

to
ri

a 
on

 1
0/

04
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV410-PP61-23 ARI 31 March 2010 16:48

conditions, such as the composition of micro-
bial community and the redox state, may in-
fluence As biomethylation in soil, and subse-
quently the uptake by rice. Some preliminary
evidence suggests that a high content of soil or-
ganic matter and reducing conditions may be
favorable to As biomethylation (41, 78). Geno-
typic differences in the percentage of DMA
have been reported among rice cultivars (56,
59, 87); whether this reflects a difference in up-
take/translocation of methylated As or the abil-
ity of As biomethylation in planta remains to
be elucidated. The pathway of As methylation
is discussed later, but clearly much remains un-
known regarding the source of DMA, whether
soil- or plant-derived, and how the uptake or in
planta biomethylation is influenced by environ-
mental factors. It is often assumed that DMA
and MMA (both with As in the pentavalent ox-
idation state) are less toxic to humans than Asi

(112). However, pentavalent MMA and DMA
can be reduced to trivalent species as metabolic
intermediates, and these trivalent intermediates

are actually more cytotoxic and genotoxic than
Asi (126).

Another factor to consider is the localiza-
tion of As in rice grain. Elemental mapping
using synchrotron X-ray fluorescence shows a
striking accumulation of As on the periphery
of rice grain in spots probably corresponding
to the ovular vascular trace (Figure 3a) (61,
73), which is the maternal tissue containing
xylem and phloem responsible for the trans-
port of nutrients to the filial tissues of aleu-
rone and endosperm. This distribution pattern
explains why the rice bran (comprising mainly
pericarp, vascular trace, aleurone, and embryo)
is more enriched in As than in the polished
white rice (endosperm) (120). Moreover, the
bran fraction has a higher percentage of Asi

than the endosperm; the latter has a higher per-
centage of DMA. Milling of rice to remove the
bran fraction is a way to decrease As concentra-
tion, although this process also removes health-
beneficial nutrients. On the other hand, rice
bran and bran products have been marketed as

S
Blue: PO
Red:  As  

CN

En

Ale

OVT 

Husk
500 µm

100 µm

50 µm 15 µm 15 µm

a

b

Figure 3
Arsenic distribution in rice grain. (a) Synchrotron X-Ray Fluorescence mapping of As in a cross section of rice grain with husk (61).
OVT: ovular vascular trace. (b) Nano-SIMS subcellular localization showing the distribution of As with protein (CN) and S in the rice
endosperm (En). Note the strong PO signal in the phytate granules in the aleurone (Ale) cell (82).
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health foods; this may not be appropriate be-
cause of their high Asi concentrations (120).
Within the endosperm, As is associated with
the protein matrix especially in the subaleurone
cells, and is possibly complexed with the sul-
fydryl groups (82) (Figure 3b).

With the information on As speciation in
rice, the potential contribution of eating rice
to the dietary intake of Asi can be estimated.
For example, a typical Bangladeshi adult con-
suming 0.5 kg locally produced rice per day
would have ingested Asi equivalent to 20%–
150% of the PTWI, excluding As from other
food sources and drinking water (138). Meharg
et al. (76) further estimated that the poten-
tial excess cancer risk from rice Asi is signifi-
cant for Asian populations, at a median of 22
and 15 per 10,000 people for Bangladeshi and
Chinese, respectively, substantially higher than
the U.S. EPA’s upper risk target for carcinogens
of 1 per 10,000. There is little risk for adult
populations that consume only small amounts
of rice (<50 g day−1). Rice is commonly used
in baby foods due to its low allergen potential.
A range of rice-based baby foods were found to
contain 60–160 μg kg−1 inorganic As (75). Ar-
senic exposure from these baby foods is lower
than the PTWI, but considerably higher than
that from drinking water at the current WHO
guideline level of 10 ppb As.

ARSENIC TRANSPORT
AND METABOLISM

The pathways of As uptake and metabolism in
plants have recently been reviewed in depth
(157). Below is a brief account of the key pro-
cesses with emphasis on new findings and un-
resolved questions (Figure 4).

Arsenic Speciation in the Rhizosphere

The rhizosphere microenvironment may be
substantially different from the bulk soil. The
difference is particularly pronounced for wet-
land plants with roots growing in a generally
anaerobic environment, where arsenite is the
predominant As species in the bulk soil solu-

tion. However, arsenite may be partly oxidized
to arsenate in the rhizosphere because of oxy-
gen release through the arenchyma tissue of
wetland plant roots. Moreover, ferrous iron is
oxidized to form Fe hydroxide/oxyhydroxide
precipitate [mostly ferrihydride: Fe(OH)3],
which is then coated onto the root surface form-
ing an Fe plaque (11, 38, 59) (Figure 1). The Fe
plaque has a strong affinity for the adsorption
of arsenate, thus retaining arsenate on the root
surfaces, although uptake of some arsenate into
root cells is possible. The Fe plaque was found
to have a significant effect on the absorption ki-
netics of As by rice roots, decreasing arsenate
uptake but increasing arsenite uptake (18).

Although arsenate is the main species taken
up by plants growing in aerobic soils, there is
evidence of the presence of arsenite in the rhi-
zosphere (131, 132). The occurrence of arsenite
is likely a result of arsenite efflux from roots (60,
149). Arsenite extruded by roots may be reab-
sorbed by the roots or oxidized to arsenate in
the rhizosphere.

Arsenic Transport

The most common forms of As in soil solution
available for plant uptake are arsenate, arsenite,
MMA, and DMA. Their uptake mechanisms
are described below.

Arsenate uptake. With dissociation constants
(pKa) of 2.2, 6.97, and 11.5, most arsenic
acid (H3AsO4) is dissociated as the oxyanions
H2AsO4

− or HAsO4
2− under normal pH con-

ditions (pH 4–8), and they are the chemical
analogs of corresponding phosphate ions. Ar-
senate is taken up by plant roots via phos-
phate transporters (Table 1). Evidence for this
comes from physiological and electrophysio-
logical studies showing a potent inhibition of
phosphate on arsenate uptake (e.g., 1, 6, 130)
and recent reports that A. thaliana mutants de-
fective in phosphate transport are more toler-
ant to arsenate (17, 35, 114). In fact, some of
these mutants were identified based on arsenate
toxicity screening (17, 35). Furthermore, arse-
nate represses genes involved in the phosphate
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Figure 4
Arsenic uptake and metabolism in plants. (a) A simplified schematic diagram of arsenic transport and metabolism in plants. The
thickness of arrow lines is indicative of the relative flux. Transporters for As uptake into leaf cells are assumed to be similar to those in
roots, but there is little knowledge of their identities. (b) The Challenger pathway of arsenic methylation in microorganisms.
AR: arsenate reductase; R: reductase; AMT: arsenic methyltransferase; GSH, reduced glutathione; GSSG, oxidized glutathione;
SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine.

starvation response, suggesting that arsenate
may mislead the phosphate sensor and interfere
with the phosphate signaling mechanism (17).
Different phosphate transporters may vary in
their affinity for arsenate. For example, the As
hyperaccumulator P. vittata appears to have a
higher affinity for arsenate than nonhyperac-
cumulator plants (96, 135). Presently the rela-
tive affinities of various phosphate transporters
for arsenate and phosphate are poorly char-
acterized. This information can be gained by
assays of arsenate/phosphate transport activi-
ties in heterologous expression systems such as
yeast or Xenopus laevis oocytes. Such informa-
tion is needed for manipulation of plants for
either decreased or enhanced arsenate uptake.

Arsenite uptake. In contrast to arsenate, ar-
senous acid (H3AsO3, pKa = 9.2, 12.1, and

13.4) is mostly undissociated at normal pH
conditions (>94% undissociated at pH <8.0).
Therefore, plant roots take up arsenite mainly
as the neutral molecule As(OH)3. As in mi-
croorganisms and mammalian tissues (8), arsen-
ite enters plant root cells via some aquaglycero-
porin channels. In higher plants, the nodulin
26-like intrinsic proteins (NIPs) are the struc-
tural and functional equivalents of the micro-
bial and mammalian aquaglyceroporins (133).
NIPs are a subfamily of the plant major intrinsic
proteins (MIPs), collectively known as aquapor-
ins or water channels (69). Recent studies have
shown that a number of NIPs are permeable to
arsenite (9, 46, 49, 65) (Table 1). NIP aquapor-
ins mediate transport of a range of small neutral
molecules including ammonia, urea, boric acid,
and silicic acid (69, 133). Whereas the perme-
ability for boric and silicic acid is restricted to
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Table 1 Plant membrane transporters for arsenic and other related substrates

Functional assay system and transport substrates

Transporter
group Subgroup Protein name Plant assay

Heterologous assay
(yeast, oocyte) References

Phosphate AtPht1;1 Phosphate, As(V)a (35, 114)
transporter AtPht1;4 Phosphate, As(V)a (114)

NIP aquaporin I AtNIP1;1 As(III) As(III), glycerol, water (49, 136)

AtNIP1;2 As(III) As(III), glycerol (49, 136)

OsNIP1;1 As(III) (65)

II AtNIP5;1 B, As(III) B, As(III), Sb(III), water (9, 49, 124, 125)

AtNIP6;1 B B, As(III), Sb(III), glycerol,
formamide, urea

(9, 125, 134)

AtNIP7;1 As(III) As(III), Sb(III) (9, 46)

LjNIP5;1 As(III) (9)

LjNIP6;1 As(III) (9)

OsNIP3;1 As(III) (65)

OsNIP3;2 As(III), Sb(III) (9)

III OsNIP2;1 (Lsi1) Si, Ge, As(III),
MMA, DMA

Si, Ge, As(III), MMA, Sb(III), B,
urea

(9, 55, 63, 65, 80)

OsNIP2;2 (Lsi6) Si, Ge Si, As(III), B, Sb(III) (9, 65, 80, 150)
Efflux carrier OsLsi2 Si, Ge, As(III) Ge (64, 65)

aBased on tolerance to arsenate.

a few members of NIPs (80, 123), arsenite per-
meability is widespread in different subclasses
of NIPs (157) (Table 1).

In rice roots, Lsi1 (OsNIP2;1), which is
highly expressed in the distal side of the plasma
membranes of the exodermis and endodermis
cells where Casparian strips are formed, is a
major entry route for silicic acid (63) and ar-
senite (65); mutation in this protein resulted in
a 60% loss of the arsenite influx in the short
term. However, the effect of Lsi1 mutation on
As accumulation in rice shoots is relatively small
over a longer growth period (65). This may
be because aquaporin channels such as Lsi1
conduct solute transport in both directions de-
pending on the concentration gradient. When
supplied with arsenate, which is taken up by
phosphate transporters and reduced to arsenite
in root cells, the rice lsi1 mutant effluxed smaller
amounts of arsenite to the external medium
than the wild-type plant (156). Similarly, het-
erologous expression of several Arabidopsis NIP

genes in yeast enhanced its tolerance to arsen-
ate, possibly through increased arsenite efflux
(9, 46). There are 9–13 NIP genes in the rice
and Arabidopsis genomes. Some of the rice NIP
genes are expressed mainly in the shoot and in-
florescence tissues (108); their roles in As trans-
port toward the grain remain to be investigated.

Although some NIP channels allow bidirec-
tional transport of arsenite, efflux of arsenite
from the exodermis and endodermis cells in
rice roots toward the stele is mediated by the
Si efflux carrier Lsi2 (65); mutation in Lsi2 had
a dramatic effect on arsenite transport to the
xylem and As accumulation in the shoots. Lsi2
is localized to the proximal side of the plasma
membranes of the exodermis and endodermis
cells, allowing solute efflux toward the stele for
xylem loading (64). This process is a crucial
step in the accumulation of As in rice shoot and
grain; it is also the step in which Si exerts a
strong inhibitory effect. Transport of Si medi-
ated by Lsi2 is an active process driven by the
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proton gradient (64). Lsi2 has a low degree of
homology (18%) with the arsenite efflux trans-
porter ArsB in Escherichia coli (64). Whether the
substrates for Lsi2 are neutral molecules or an-
ions of Si and arsenite is not known, although at
the typical cytosolic pH of 7.5, only 2% of sili-
cic acid and arsenous acid would be dissociated
as anions.

Uptake of methylated As. The permeabil-
ity of MMA and DMA across liposomes was
estimated to be 1.4 × 10−13 and 4.5 ×
10−11 cm s−1, respectively (19). Therefore, sim-
ple diffusion of these molecules across the lipid
layer of the plasma membranes would be too
slow to account for their uptake into root cells.
Recent studies have shown that the rice aqua-
porin Lsi1 also mediates the uptake of undis-
sociated pentavalent MMA and DMA (55); the
rice lsi1 mutant has lost 80% and 50% of the up-
take capacity for MMA and DMA, respectively,
compared with the wild-type rice. MMA and
DMA have lower dissociation constants than
arsenite (pKa = 4.2 and 6.1, respectively). This
explains the sensitivity of their uptake to the ex-
ternal pH, increasing as the pH of the medium
decreased, which is consistent with an increas-
ing proportion of the undissociated species (55).
At pH 5.5, uptake by rice roots decreases in the
order of arsenite > MMA > DMA (1). The
substrate properties that may explain this order
are: (a) the extent of dissociation within the nor-
mal pH range, and (b) the number of hydroxyl
groups; formation of the hydrogen bonds be-
tween the hydroxyl group of a substrate and
the aquaporin protein along the pore structure
greatly facilitates the flux through the channel
(146). In contrast to arsenite, the rice Lsi2 is
not involved in the efflux of MMA or DMA
toward the stele, possibly because most MMA
and DMA are dissociated at the cytoplasmic
pH (55). Despite its limited uptake (1, 102),
for unknown reasons, DMA is more efficiently
translocated from roots to shoots (55, 67, 102).

Long-distance transport. In most plant
species analyzed, arsenite dominates in the
xylem sap, suggesting that it is the main form

loaded into the xylem (157). This is the case
even when arsenate is supplied to plant roots,
and is consistent with the fact that roots have
a high capacity for arsenate reduction (see be-
low). There is no evidence that arsenite in the
xylem sap is complexed with thiol compounds
(95, 101). In fact, complexation with thiols de-
creases arsenite mobility from roots to shoots
(W.J. Liu & F.-J. Zhao, unpublished). Rice loads
arsenite into xylem more efficiently than does
wheat or barley, consistent with the highly ex-
pressed Si pathway in the former (118). P. vit-
tata has an exceedingly efficient system to load
arsenite into the xylem (119), but the underpin-
ning mechanism has not been elucidated.

Little is known about phloem transport
of As, such as the form of As transported
and the transporters involved in phloem load-
ing and unloading. In a recent study using
rice panicles excised below the flag leaf node,
Carey et al. (15) found that DMA was trans-
ported to the immature grain approximately
30 times more efficiently than arsenite. When
the phloem flow was disrupted by stem girdling,
transport of arsenite into the grain was de-
creased by tenfold, but that of DMA by only
50%. These results suggest that arsenite is de-
livered to rice grain mainly through the phloem,
whereas both phloem and xylem pathways make
an equal contribution to the transport of DMA
to grain. Further evidence from a synchrotron
μ-XRF study indicates that arsenite accumu-
lates in the ovular vascular trace of the grain,
whereas DMA permeates into the outer layer
of the endosperm (15). Arsenic toxicity may
interfere with As translocation to rice grain,
resulting in decreased rather than increased
grain concentration at higher As exposures
(92).

Arsenic Metabolism

Two aspects of As metabolism are discussed
here, whereas detoxification of As is considered
later.

Arsenate reduction. The dominance of triva-
lent As in plant tissues when arsenate is the

546 Zhao · McGrath · Meharg

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

10
.6

1:
53

5-
55

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 b

-o
n:

 U
ni

ve
rs

id
ad

e 
T

ec
ni

ca
 d

e 
L

is
bo

a 
(U

T
L

) 
- 

R
ei

to
ri

a 
on

 1
0/

04
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV410-PP61-23 ARI 31 March 2010 16:48

form supplied to plants (22, 95, 149, 157)
indicates a high capacity of arsenate reduction.
Both roots and shoots of rice exhibit arsenate
reduction activities (24), but roots may be quan-
titatively more important because arsenite is the
main form found in the xylem sap of a number
of plant species (157). The plant homologues
of the yeast arsenate reductase Acr2p have
recently been isolated from A. thaliana (23),
Holcus lanatus (10), rice (24), and P. vittata
(26). The plant ACR2 proteins are CDC25-
like (cell division cycle) tyrosine phosphatases
that have both phosphatase and arsenate reduc-
tase activities; PvACR2 from P. vittata appears
to be an exception with only the activity of an
arsenate reductase (26). Purified recombinant
proteins of plant ACR2s are able to reduce
arsenate in vitro using GSH and glutare-
doxin as reductants. However, the in planta
role of ACR2 remains unresolved, since there
are conflicting reports on the phenotype of
the ACR2 knockout or knockdown lines of
A. thaliana with regard to arsenate tolerance
and As translocation from roots to shoots (10,
23). Furthermore, the As speciation in the Ara-
bidopsis ACR2 knockout mutants is still domi-
nated by As(III) (157), suggesting a functional
redundancy of ACR2. The possible existence
of other arsenate reductases or nonenzy-
matic reduction mechanisms warrants further
investigation.

Arsenic methylation. An early study by
Nissen & Benson (84) using paper chromatog-
raphy suggested that P- and N-starved tomato
plants, when supplied through roots with a ra-
dioactive 74As (arsenate) solution for two days,
were able to convert significant proportions of
74As into methylated As species. In contrast,
nutrient-sufficient plants showed little methy-
lation of 74As. In several recent studies where
plants were fed only inorganic As in hydro-
ponic culture, small amounts of methylated As
were detected in plant tissues or xylem sap (79,
99, 101, 149). These reports provide circum-
stantial evidence for the existence of in planta
biomethylation of As, albeit at a low level. Fur-
ther unequivocal evidence should be sought

from experiments that employ axenic culture
to rule out the possibility of microorganism-
mediated methylation prior to plant uptake.

Little is known about the pathway and en-
zymology of As methylation in plants, although
much can be inferred from the Challenger
pathway (Figure 4b) established from studies
on fungi (7). In this pathway, arsenite is the
initial substrate for methylation catalyzed by
S-adenosylmethyltransferase using the methyl
donor S-adenosyl-l-methionine (SAM). The
arsM genes encoding As methyltransferases
have been identified in the soil bacterium
Rhodopseudomonas palustris (98) and in the ther-
moacidophilic eukaryotic alga Cyanidioschyzon
sp. living in an As-rich geothermal environ-
ment (97). At a high temperature (60◦–70◦C),
two Cyanidioschyzon ArsM proteins are able
to methylate arsenite sequentially to mono-,
di-, and trimethyl As compounds with the
end product, TMA gas, being volatilized (97).
SAM-dependent As methyltransferase activities
were detected in the leaf extracts of bentgrass
(Agrostis capillaris) (147). The rice genome con-
tains methyltransferase genes with the same
UbiE/Coq5 family protein motif as that of the
microbial arsM genes (88), but the plant As
methyltransferase(s) is yet to be identified. Ar-
senic methylation is accompanied by the ox-
idation of trivalent to pentavalent As; thus,
a reduction step is also needed for further
methylation to proceed. In humans this reduc-
tion is catalyzed by the glutathione transferase
omega with reduced glutathione as the elec-
tron donor (4). Rice roots are able to reduce
MMA(V) to trivalent MMA(III) in accordance
with the Challenger pathway (55), but the en-
zyme(s) responsible for this reduction is un-
known. Also not known is whether plants pro-
duce volatile species of methylated As such as
TMA.

Arsenic Toxicity and Detoxification

The mode of toxicity differs between As species;
arsenate interferes with phosphate metabolism
such as phosphorylation and ATP synthe-
sis, whereas arsenite binds to vicinal sulfydryl
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groups of proteins affecting their structures
or catalytic functions (43). Because arsenate is
rapidly reduced to arsenite, the majority of the
toxic effects of arsenate may actually be due to
its reduction product, arsenite (43). Exposure
to arsenate generates reactive oxygen species
in plant tissues, and induces oxidative stress
such as lipid peroxidation (e.g., 2, 39, 83, 104).
Exposure to arsenite also upregulates a num-
ber of enzymes involved in the antioxidant re-
sponses (83, 104). Depletion of cellular reduced
GSH may be the cause of As-induced oxida-
tive stress. For nonhyperaccumulator plants,
As toxicity often occurs at a shoot As concen-
tration varying between 1 and 100 mg kg−1

(48), whereas the As hyperaccumulator P. vittata
can withstand 5000–10,000 mg kg−1 of As in
the frond tissue without suffering from toxicity
(62, 128).

Although some plant species that colonize
As-contaminated soils are able to restrict ar-
senate uptake through an adaptive suppres-
sion of high-affinity phosphate transporters (see
Reference 72 for a review), As entering into
cells has to be detoxified through complexation
and/or vacuolar compartmentation. Another
possible constitutive mechanism of detoxifica-
tion in plants, suggested recently (60), is the
efflux of arsenite to the external medium.

Complexation with thiol compounds. Ar-
senic is a strong inducer of PC synthesis (e.g.,
111, 116). A number of genes or enzymes in-
volved in glutathione synthesis, metabolism,
and transport are upregulated in rice seedlings
exposed to arsenate (2, 88), probably reflecting a
higher demand for GSH under As stress. Block-
ing PC synthesis with l-buthionine-sulfoxime
leads to hypersensitivity to both arsenate and
arsenite (10, 110, 111). An Arabidopsis PC-
deficient mutant is 10–20 times more sensitive
to arsenate than is the wild type (37). Toler-
ance to arsenate is also enhanced by increased
thiol synthesis in transgenic plants overexpress-
ing a bacterial γ-glutamylcysteine synthetase
gene (γ -ECS) (22, 58) or the Arabidopsis PC syn-
thase gene (AtPCS1) (32, 57). These findings,
and the fact that much of the arsenite in plant

tissues is complexed with thiol-rich peptides
(22, 95, 101), provide conclusive evidence that
thiols, particularly PCs, play a crucial role in
As detoxification in As nonhyperaccumulators.
Note that the observed effect on arsenate tol-
erance is through the detoxification of arsenite,
the product of arsenate reduction. In contrast,
As hyperaccumulators such as P. vittata and
P. cretica do not rely on a PC-based mechanism
to detoxify As (100, 154, 158).

Vacuolar sequestration. The PC-arsenite
complexes are likely to be stored in vac-
uoles. The yeast vacuolar transporter Ycf1p,
a member of the ATP-binding cassette (ABC)
superfamily, confers arsenite resistance by
transporting the glutathione-S-conjugated ar-
senite [As(III)-(GS)3] into the vacuole (34).
The tonoplast vesicles prepared from H. lana-
tus roots are able to take up As(III)-(GS)3 in
a MgATP-dependent and charge-neutral fash-
ion, consistent with ABC-mediated transport
(10). The PC-arsenite complexes are also likely
to be transported into vacuoles by an ABC pro-
tein, the identity of which is not yet known.
In P. vittata fronds, As is stored in the vacuoles
mainly as inorganic arsenite (62, 94). Because
of the likely large concentration gradient from
the cytoplasm to the vacuole, transport of ar-
senite across the tonoplast probably involves an
energy-dependent active mechanism. A trans-
porter(s) responsible for arsenite uptake into
the vacuoles is not yet known but may be the
key determinant of the hypertolerance pheno-
type in P. vittata and other hyperaccumulator
plants.

POTENTIAL STRATEGIES
FOR MITIGATING ARSENIC
CONTAMINATION IN
SOIL-PLANT SYSTEMS

Because of the complexity in the As transfer
from soil to plants, not all strategies discussed
below will be applicable in every situation. It is
also recognized that social and economic con-
ditions often dictate which strategy is feasible
and applicable.
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Agronomy

Because soil redox potential controls As mobil-
ity in paddy soil, water management can be used
to minimize As toxicity to rice and As uptake
and transfer into rice grain. Mid-season drain-
ing of water is an effective way to reduce the As-
induced “straight-head” disease (spikelet steril-
ity) in rice (137). Growing rice under aerobic
soil conditions for the whole or part of the rice
growing season markedly reduces As accumula-
tion in the grain (56, 148). Aerobic rice is a new
cultivation method to save water use, but yield
is generally lower than for flooded rice (93); an-
other potentially negative effect of aerobic rice
is its tendency to accumulate more cadmium
(5). Another way to maintain a higher redox
potential is to grow rice in raised soil beds with
water in the surrounding furrows; rice grown
with this cultivation method contains signifi-
cantly lower levels of As in the grain than does
the conventional flooding method (25).

It has been reported that Si availability in soil
has a large influence on As uptake by rice (12).
This is not surprising because of the shared up-
take pathway between Si and arsenite (65). It
may be inferred that soils with a high Si avail-
ability, such as those developed from volcanic
ash, are less likely to have the problem of exces-
sive As accumulation in rice. In a greenhouse
study, the addition of Si fertilizer markedly de-
creased As accumulation in rice shoots and, to
a lesser extent, the concentration of Asi in the
grain (56). Silicon fertilizers are commonly used
in some rice-growing regions for yield benefits;
their uses in As-contaminated paddy soils may
prove to be an effective and practical way to
mitigate the As accumulation problem.

Breeding

Significant genetic variations in the As concen-
tration of rice grain have been reported (87),
although there are also strong genotype by en-
vironment interactions (86). Rice cultivars with
red bran are associated with higher As concen-
trations (87); whether there is a mechanistic
link between bran color and As accumulation
remains to be investigated. Quantitative trait

loci (QTLs) have been reported for As con-
centrations in rice roots, shoots, and grain in
a greenhouse study; the two QTLs associated
with grain As explained 35% and 26% of the
phenotypic variance (153). In the future, ro-
bust QTLs may be used in molecular marker-
assisted breeding of low As-accumulating rice.

Enhanced tolerance to As is a useful trait for
more contaminated environments that may re-
sult in toxicity, e.g., paddy fields contaminated
with As from irrigation water (92). Genetic vari-
ation in arsenate tolerance has been reported in
rice (89). In this study using a rice mapping pop-
ulation, arsenate tolerance is mapped onto three
loci with epistatic interactions between them:
progeny inheriting any two of the three genes
from the tolerant parent exhibit tolerance (89).
These loci have no apparent link with phos-
phate transporter genes.

Root-Induced Soil Manipulation

A recent greenhouse study showed that As ac-
cumulation in straw and grain correlated nega-
tively with root porosity and the rate of radial
O2 release among 25 rice cultivars, presumably
through the effect of O2 release on Fe plaque
formation, arsenite oxidation and subsequent
arsenate retention on the Fe plaque (77). Breed-
ing for rice cultivars with stronger O2 release
characteristic may have the potential for de-
creasing As accumulation. However, it should
be emphasized that the rhizosphere effect on
As uptake by wetland plants is complex, and Fe
plaque may serve as a sink or a source of As at
different growth stages of plants.

Phytoremediation

The exceptional ability of P. vittata and other
hyperaccumulators to accumulate As may be
explored in phytoremediation strategies. Al-
though greenhouse studies demonstrate a con-
siderable potential of As extraction from the
soil by P. vittata (e.g., 129), results from two
small-scale field trials are less promising owing
to low biomass production (<1 t dry biomass
ha−1) (51, 109). Over the two-year growth
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period, the total As removal by P. vittata fronds
was only about 1% of the soil As in the top
30 cm of depth (51). The efficacy of phytoex-
traction is determined by biomass production
and the TF; a combination of 10 t biomass ha−1

and an As TF of 20 could reduce soil As in the
top 20 cm of depth by half after ten plant har-
vests (70). A number of factors should be taken
into account when evaluating As phytoextrac-
tion strategies. First, the As TF of P. vittata
can vary from below 1 to 100 depending on
the As bioavailability in soil; As contamination
from geogenic or mining sources is generally
associated with a low bioavailability and hence
is difficult to phytoextract from the soil (113).
Second, even with an optimal combination of
biomass and transfer factor, phytoextraction
may be feasible only in low to moderately con-
taminated soils. Third, all known As hyperac-
cumulating ferns are from tropical or subtropi-
cal regions and do not thrive in cooler regions.
Fourth, these ferns could be invasive plant
species and their introduction to nonindige-
nous areas should be evaluated carefully with
regard to potential ecological consequences.

Genetic Engineering

Different strategies of genetic manipulation
may be pursued depending on the goal of
modification, e.g., increased tolerance to bet-
ter withstand an As-contaminated environ-
ment, increased uptake and tolerance for
phytoextraction, decreased uptake, and/or in-
creased methylation for improved food safety
(127, 159).

A moderate increase in As tolerance has been
demonstrated in transgenic plants overexpress-
ing genes involved in the synthesis of PCs or
their precursor GSH (32, 57). These studies
show that enhanced PC synthesis in the trans-
genic plants alone does not lead to more As
accumulation in the shoots. Overexpression of
both γ -ECS and PCS in Arabidopsis produces
a greater effect on As tolerance and accumu-
lation than does overexpression of either gene
alone (36). Dhankher et al. (22) demonstrated
that dual overexpression in Arabidopsis of two

E. coli genes, the arsenate reductase gene arsC
in the leaves driven by a light-induced soybean
RuBisCo promoter and γ -ECS in both roots
and shoots driven by a strong constitutive actin
promoter, substantially enhances both the tol-
erance to and accumulation of As in the shoots.
The leaf-specific expression of arsC presumably
enhances arsenate reduction, even though the
endogenous activity of arsenate reduction is al-
ready very high [>96% As present as As(III)
in the untransformed plants], whereas γ -ECS
overexpression boosts the biosynthesis of thiol-
rich peptides for As(III) complexation. These
results imply that enhanced shoot tolerance has
the effect of driving more As accumulation in
shoots. In future it may be possible to engineer
high-biomass plants for As phytoextraction us-
ing genes from P. vittata, specifically those re-
sponsible for efficient xylem loading of As and
detoxification in fronds, although the molecu-
lar mechanisms for As hyperaccumulation are
obscure at present.

For crop plants, it is not possible to block
the entry of arsenate or arsenite into plants en-
tirely because of their shared transport systems
with essential or beneficial elements. However,
it may be possible to identify variants of phos-
phate transporters, NIP aquaporins, or Lsi2-
like carrier proteins that are more discrimina-
tive against As. Enhanced PC production in
roots may be a strategy to restrict As translo-
cation to shoots through arsenite-PC com-
plexation and vacuolar sequestration in roots.
Another target would be to increase in planta As
methylation to convert the more toxic Asi to less
toxic methylated As species, or even to volatiliz-
able forms of As. This may be achieved by over-
expression of plant genes coding for As methyl-
transferases, which have not yet been identified,
or of microbial or algal arsM genes (97, 98).

CONCLUDING REMARKS

The nature of As being redox-active and highly
toxic to organisms, and its propensity to be
methylated, make As an interesting and com-
plex element to study. Arsenic uptake and
metabolism in plants need to be placed in a
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wider context with regard to the biogeochemi-
cal cycling of As in the environment. Bioavail-
ability and speciation of As in soil are strongly
dependent on the environmental conditions;
this knowledge is important as it determines
the extent of As accumulation by plants and the
consequences of As contamination in the food
chain. The widespread As contamination in the
environment, the mobilization of As into rice
grain even in soils with baseline As concentra-
tions, and the realization that excessive As ac-
cumulation in rice can present a health risk to
humans have provided the recent impetus in
research on this subject area.

Significant progress has been made in re-
cent years in the understanding of As uptake,

speciation, and detoxification in plants. There
are, however, substantial knowledge gaps, es-
pecially with regard to the mechanisms of As
sequestration in the vacuoles and of As load-
ing and unloading in xylem and phloem, the
regulation of As accumulation in grain, and the
pathways and enzymes responsible for arsen-
ate reduction and methylation. Recent advances
in the analytical techniques for As speciation
have been instrumental in enhancing our un-
derstanding of As biogeochemical cycling and
plant As metabolism. Combining these analyti-
cal tools with molecular genetics and functional
genomics should provide ample opportunities
for unraveling the mechanisms of As transport,
metabolism, and regulation.

SUMMARY POINTS

1. Environmental conditions influence As speciation in soil and its availability to plants.
Flooding of paddy fields leads to mobilization of arsenite. Methylated As may be present
in soil as a result of microbial and/or algal biomethylation, or from past uses of methylated
As pesticides.

2. Arsenate is taken up by plant roots through phosphate transporters, whereas the uptake
of undissociated arsenite and methylated As is mediated, at least partly, by NIP aquaporin
channels.

3. Rice is efficient at As assimilation owing to arsenite mobilization in flooded paddy soil
and arsenite uptake sharing the highly expressed Si pathway. Arsenic accumulation in
rice grain represents a potential health risk to humans.

4. Arsenate is readily reduced to arsenite, which is detoxified by complexation with thiol-
rich peptides and sequestrated in the vacuoles in As nonhyperaccumulating plants.

5. Excessive accumulation of As in rice can be mitigated through agronomic and crop-
breeding strategies. Genetic modification may be employed to engineer plants more
tolerant to As, or with reduced uptake for improved food safety.

FUTURE ISSUES

1. Genes and enzymes responsible for arsenate reduction in planta require further
elucidation.

2. How is arsenite loaded into xylem, the bottleneck step in As accumulation in the shoots?

3. How do hyperaccumulators achieve exceedingly efficient root-to-shoot translocation of
As?
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4. What are the transport mechanisms for different As species through phloem, especially
as to grain?

5. How are arsenite or arsenite-thiol complexes transported across the tonoplast for vacuolar
sequestration?

6. Do plants methylate As, and if so, do they vary in this property, and what are the key
genes involved?

7. Do plants volatilize As?
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